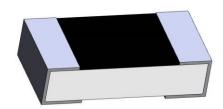


1/16W, 0402, High Precision Thick Film Chip Resistor(Lead / Halogen Free)

Reversion History:

Date	Revision	Changes
2021.08.17	A0	New Approval


REVISION: A0

1/16W, 0402, High Precision Thick Film Chip Resistor(Lead / Halogen Free)

Features / Applications :

- Telecommunication Equipment, Digital Cameras
 Watches, Pocket Calculators, Computers, Instruments
- Halogen Free Epoxy
- RoHS compliant
- No RoHS exemption

Electrical Specifications:

Power Rating*	Resistance Values Series	Resistance Tolerance	Resistance Range (Ω)	Temperature Coefficient of Resistance ppm /°C (Code)	Operating Temperature Range	Max. Operating Voltage**
	E24 series & E96 series	± 0.5% (D)	10∼1.62M	± 100 (R)		
1/16W		± 1.0% (F)	1.0~9.76	0~500 (S)		50V
			10∼1.62M	± 100 (R)	-55℃ to 125℃	
			10∼1.62M	± 200 (S)	-55 C 10 125 C	
	E24 series	± 5.0% (J)	1.0~9.1	0~500 (S)		
	E24 Series	1 3.0% (1)	10∼2M	± 200 (S)		
Jumper	Resistance		Rated current		Operating Temperature Range	
Below 50 mΩ			1A		-55℃ to 125℃	

Note: *Package Power Temperature Derating Curve

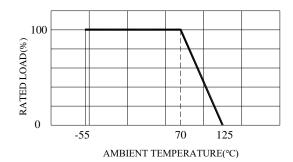
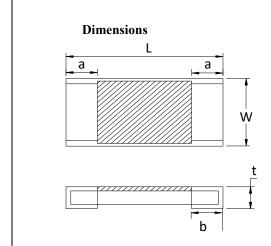


Figure 1. \div Power Temperature Derating Curve

Note: **Resistors shall have a rated DC or AC(rms.) continuous operating voltage corresponding to the power rating, as calculated from the following formula

$$V = \sqrt{P \times R}$$
 Where V : Rated voltage (V)


P: Rated power (W)

R : Nominal resistance (Ω)

If the voltage so obtained exceeds the maximum operating voltage, this maximum voltage shall be the rated voltage.

Outline Drawing:

Code Letter	Dimension
L	1.00 ± 0.05
W	0.50 ± 0.05
t	0.35 ± 0.05
а	0.20 ± 0.10
b	0.25 ± 0.10

Unit: mm

Type Designation:

CRTF	Н	Х	Q	-	XXXX	-	Х
(1)	(2)	(3)	(4)		(5)		(6)

3

Note:

(1) Series No.

(2) Size(inch): H=0402(0.5*1.0mm)

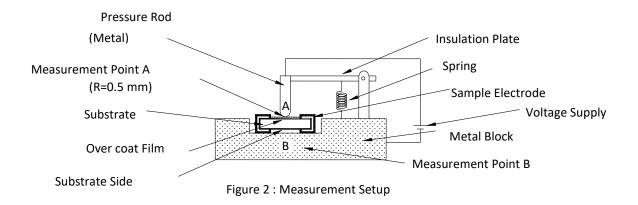
(3) TCR: X= Jumper

Resistor refer to paragraph 2

(4) Power rating: Q=1/16W

(5) Resistance value : $103 = 10k\Omega$ (E24) ; $1131 = 1.13k\Omega$ (E96)

(6) Tolerance : D= $\pm 0.5\%$,F = $\pm 1\%$, J = $\pm 5\%$, X = Jumper (Below $50m\Omega$)


REVISION: A0

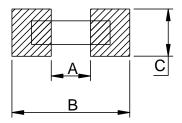
Characteristics:

Electrical

lhous	Specification and Requi	Test Method	
Item	Resistor	Jumper	(Refer to JIS C 5201)
Short Time	\triangle R: \pm (2%+ 0.1 Ω)	Max. $50 \text{m}\Omega$	(1) Applied voltage :
Overload	Without damage by		2.5 x rated voltage or
	flashover, spark, arcing,		2 x maximum operating voltage
	burning or breakdown		whichever is less
			(2) Test time : 5 seconds
Insulation	Over 100 M Ω on Overcoat laye	(1) Setup as figure 2	
Resistance	Over 1,000 M Ω on Substrate side face up		(2) Test voltage : 100V _{DC}
		(3) Test time :	
		60 + 10 / -0 seconds	
Voltage Proof	R: \pm (2%+ 0.1 Ω)	Max. $50 \text{m}\Omega$	(1) Setup as figure 2
	Without damage by		(2) Test voltage : 100V _{AC} (rms.)
	flashover, spark, arcing,		(3) Test time :
	burning or breakdown		60 +10 / -0 seconds

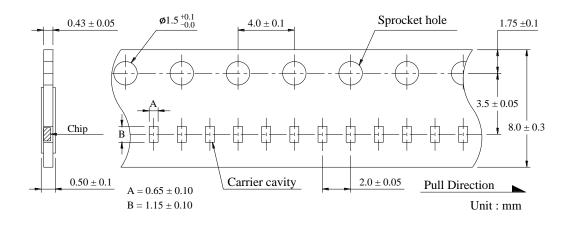
Mechanical

Itom	Specification and Requi	rement	Test Method		
Item	Resistor	Jumper	(Refer to JIS C 5201)		
Solder ability	The surface of terminal immers	ed shall be	Solder bath :		
	minimum of 95% covered with	a new coating	After immersing in flux, dip in 245 \pm 5		
	of solder		$^{\circ}\text{C}$ molten solder bath for 2 \pm 0.5		
			seconds		
Resistance to	\triangle R: \pm (1.0%+ 0.05 Ω)	Max. $50 m\Omega$	(1) Pre-heat: 100~110°C for		
Solder Heat	Without distinct deformation		30 seconds		
	in appearance		(2) Immersed at solder bath		
			of 270 \pm 5°C for 10 \pm 1 seconds		
			(3) Measuring resistance		
			1 hour after test		
Vibration	\triangle R: \pm (0.5%+ 0.05 Ω)		(1) Vibration frequency :		
	Without mechanical damage su	ıch as break	10Hz to 55Hz to10Hz in 60 seconds		
			as a period		
			(2) Vibration time : period cycled for		
			2 hours in each of 3 mutual		
			perpendicular directions		
			Amplitude : 1.5mm		
Shock	\triangle R: ± (0.25%+ 0.05Ω)		(1) Peak value : 490N		
	Without mechanical damage su	ch as break	(2) Duration of pulse : 11ms		
			(3) 3 times in each positive and		
			negative direction of 3 mutual		
			perpendicular directions		
Bending Test	ΔR: ±(1.0%+ 0.05Ω)		Bending value : 3 mm for		
	Without distinct damage in appearance		30 ± 1 seconds		
Solvent Resistance	Without mechanical and	Max. 50 m Ω	(1) Solvent:		
	distinct damage in appearance		Trichloroethane or Isopropyl alcohol		
			(2) Immersed in solvent at		
			room temperature for 90 seconds		

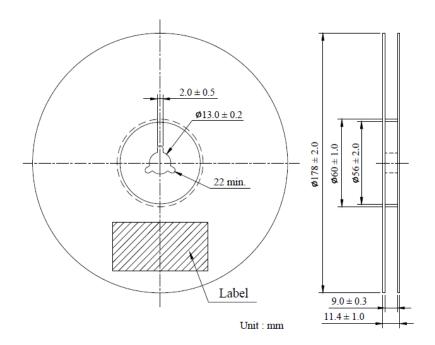

Endurance

	Specification and Requirement		Test Method
Item	Resistor	Jumper	(Refer to JIS C 5201)
Thermal Shock	\triangle R: \pm (1.0%+ 0.05 Ω) Without distinct damage in appearance	Max. 50m $Ω$	 (1) Repeat 5 cycle as follows: (-55 ± 3°C,30minutes) →(Room temperature, 2~3 minutes) →(+125 ± 2°C,30minutes)
			 →(Room temperature, 2~3 minutes) (2) Measuring resistance 1 hour after test
Moisture with Load	Δ R: \pm (5.0%+ 0.1 Ω) Without distinct damage in appearance Marking should be legible	Max. 50mΩ	 (1) Environment condition: 40± 2°C,90~95% RH (2) Applied Voltage: rated voltage (3) Test period: (1.5 hour ON →(0.5 hour OFF) cycled for total 1,000 + 48 / - 0 hours (4) Measuring resistance 1 hour after test
Load Life	\triangle R: \pm (5.0%+ 0.1 Ω) Without distinct damage in appearance	Max. 100m $Ω$	 (1) Test temperature: 70 ± 2°C (2) Applied Voltage: rated voltage (3) Test period: (1.5 hour ON) →(0.5 hour OFF) cycled for total 1,000 + 48 / - 0 hours (4) Measuring resistance 1 hour after test
Low Temperature Store	\triangle R: \pm (5.0%+ 0.1 Ω) Without distinct damage in appearance	Max. 100mΩ	 (1) Store temperature: -55 ± 3°C for total 1,000 + 48 / - 0 hours (2) Measuring resistance 1 hour after test
High Temperature Store s	\triangle R: \pm (5.0%+ 0.1 Ω) Without distinct damage in appearance	Max. 100m $Ω$	 (1) Store temperature: +125 ± 2°C for total 1,000 + 48 / - 0 hours (2) Measuring resistance 1 hour after test

6

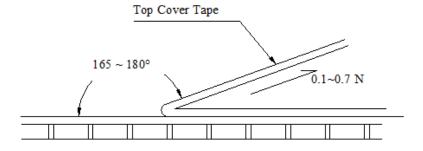

Recommend Land Pattern Dimensions:

А	0.5	
В	1.5	
С	0.4~0.8	


Unit: mm

TAPE PACKAGING DIMENSIONS:

REEL DIMENSIONS:


Numbers of Taping: 10,000 pieces/reel

The following items shall be marked on the reel.

- (1) Type designation.
- (2) Quantity
- (3) Manufacturing date code
- (4) Manufacturer's name

Peel force of top cover tape

The peel speed shall be about 300 mm/min. The peel force of top cover tape shall be between 0.1 to 0.7 N.

Care Note:

Care note for storage

- (1) Chip resistor shall be stored in a room where temperature and humidity must be controlled. (temperature 5 to 35 °C, humidity 45 to 85% RH) However, a humidity keep it low, as it is possible.
- (2) Chip resistor shall be stored as direct sunshine doesn't hit on it.
- (3) Chip resistor shall be stored with no moisture, dust, a material that will make solderability inferior, and a harmful gas (Hydrogen chloride, sulfurous acid gas, and Hydrogen sulfide)

Care note for operating and handling

- (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
- (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
- (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (5) Observe Limiting element voltage and maximum overload voltage specified in each specification.
- (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.

REVISION: A0